Department of Physics

Assam Engineering College

Syllabus for B.Tech 2nd Semester:

(CE, ME, ChE, IPE)

Module No	Subtitle of the Module	Topics in the Module	No. of Lectures
		Conservative & non-conservative forces, Central forces, Conservation of angular momentum, Non-inertial frames of reference; Rotating co- ordinate system- Centripetal and Coriolis acceleration.	б
Ι	Mechanics	Harmonic Oscillator, damped harmonic motion over-damped, critically damped and under damped oscillators; forced oscillation and resonance	5
		Elasticity, Hooke's law, factors affecting elasticity, Poisson's ratio, Relations in elasticity, twisting couple on a wire, bending of beams with symmetric cross-section, Cantilever.	6
П	Fluid Mechanics	Bernoulli's Theorem and its important applications, Viscosity, Co-efficient of Viscosity, Streamline and Turbulent flow, Reynolds Number, Critical velocity, Poiseuille's equation for flow of liquid through a tube, Motion of a Rigid body in a viscous medium, Rotational viscometer.	7
III	Acoustics	Decibel level of sound, Weber–Fetchner law, Reverberation & Reverberation time, Sabine's formula for reverberation time (Derivation not required), Absorption co-efficient, Factors affecting acoustics of buildings and their remedies, Acoustic design of a hall.	6
IV	Optics	Aberration in lenses, Spherical and Chromatic Aberration, Method of minimization of Spherical and Chromatic Aberration.	3
	Quantum Mechanics	Wave nature of particles, Uncertainty principle, Wave function and wave packets, Time dependent & time independent Schrodinger equation, Solution of Schrödinger's equation for one dimensional problem: Particle in a box.	5
V	Nanomaterials and Advanced materials	Introduction to Nanomaterials, Properties of Nanomaterials, Potential Well and Quantum Confinement (qualitative), Types of	4

	Nanomaterials and their applications.	
	Advanced materials: Shape memory alloys and	2
	Biomaterials.	3

Text Books:

- 1. Engineering Physics V. Rajendran (Tata McGraw Hill education Pvt. Limited)
- 2. Engineering Physics D.K. Bhattacharya and Poonam Tandon (Oxford University Press)

Reference Books:

- 1. Elements of Properties Matter D.S. Mathur (S. Chand and Company Pvt. Limited)
- 2. Applied Physics for Engineers Neeraj Mehta (PHI Learning Pvt. Limited)

List of Experiments:

- 1. To find the value of the modulus of rigidity of the material of a rod by using: Vertical Twisting apparatus (Barton's apparatus).
- 2. To find the Moment of Inertia of a given body by using the Moment of Inertia Table.
- 3. To find the refractive index of the material of a prism using a spectrometer (by finding the angle of the prism and the angle of minimum deviation of the prism).
- 4. To find the specific heat of a given liquid by the method of cooling.
- 5. To find the ratio of two low resistances by using a potentiometer.
- 6. To find the average resistance of the Meter Bridge wire by Carey Foster's method.
- 7. To find the refractive index of water by using a convex lens and a mirror.

Text Books:

1. A Text Book on Practical Physics – K.G. Mazumdar and B. Ghosh (Sreedhar Publishers).

Course Outcomes:

CO1: Students will be able to apply the fundamentals of mechanics to solve simple Engineering problems.

CO2: Students will be able to learn the basic principles of Fluid Mechanics along with their applications.

CO3: Students will be able to apply the principles of Acoustics to different Engineering complexities.

CO4: Students will be able to learn and analyze the different types of aberration in lenses along with their minimization.

CO5: Students will be able to learn the basic fundamentals of nanomaterials and advanced materials.

Programme outcomes:

- **1. Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2. Problem analysis:** Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.